
C++ FRIEND FUNCTION &
INHERITANCE

By P.P.Krishnaraj
P.P.Krishnaraj

RSET

FRIEND FUNCTION

• In encapsulation and data hiding: a non member function has no
permission to access private data of the class.

• The private data members of the class are accessed only from member
function of the same class. Any non-member function cannot access
the private data of the class.

• C++ allows a mechanism in which a non-member function can access
the private data members of the class i.e by declaring a non-member
function friend of the class whose private data has to be accessed.

P.P.Krishnaraj RSET

class DCA

{

int roll;

friend void disp(void);

};

void disp(void)

{

----;

----;

}

int main()

{

disp();

}

P.P.Krishnaraj RSET

RULES

• Not a member of any class therefore no need for scope resolution operator.

void sum::putdata(void) void disp(void)

• Friend function can be called like normal function, no need of object.(since it is not a
member of any class)

a.disp(); disp();

• Definition also like normal function.(no need to mention the name of the class).

• Arguments assed while calling friend function should be the object of the class.

P.P.Krishnaraj RSET

Q) Write a program to access private data using non-member function.
Use friend function.

P.P.Krishnaraj RSET

class student
{
int mark1;
public :
void get_marks()
{
cout<<“enter two values”;
cin>>mark1;
}
friend void show_mark(student);
};

void show_mark(student a)
{
cout<<“mark of student =“<<a.mark1;
}

void main()

{

student k;

k.get_marks();

show_mark(k); //call to friend f(n)

return 0;

}
k

student a

P.P.Krishnaraj RSET

Q) Write a program to declare friend function in two classes. Calculate
the sum of integers of both the classes using friend sum() function.

P.P.Krishnaraj RSET

#include<iostream.h>

#include<conio.h>

class first;

class second

{

int s;

public :

void get_value()

{

cout<<“enter a number”;

cin>>s;

}

friend void sum(second,first);

};

class first

{

int f;

public :

void get_value()

cout<<“enter a number”;

cin>>f;

}

friend void sum(second,first);

};

void sum(second d,first t)

{
cout<<“sum of numbers”<<t.f+d.s;

}

void main()

{

clrscr();

first a;

second b;

a.get_value();

b.get_value();

sum(b,a);

}

P.P.Krishnaraj RSET

Q) Write a program to exchange values between two classes using
friend functions. (assignment)

P.P.Krishnaraj RSET

Q) Write a program to declare three classes. Declare integer array as
data member in each class. perform addition of two data member
arrays into array of third class. Use friend function.(assignment)

P.P.Krishnaraj RSET

INHERITANCE
(Concept)

• Existing class are main components of inheritance

• New classes can be derived from existing class

• The properties of existing class are simply extended to new class

• The new class created using such methods are called as derived class and the
existing classes are known as base classes. The relationship between new class
and existing class are known as kind of relationship.

• The programmer can define new member variables and functions in derived
class but the base class remain unchanged.

• The object of derived class can access members of base class as well as
derived class. On the other hand the base class cannot access members of
derived class. The base classes do not know about their sub classes.

P.P.Krishnaraj RSET

class Name of the derived class : Access specifier Name of the base class
{
-----;
-----;
}
Eg: class B : public A

Class A

Class B=Derived class

P.P.Krishnaraj RSET

class B : public A

{

//members of class B

};

class B : private A

{

//members of class B

};

class B : protected A

{

//members of class B

};
P.P.Krishnaraj RSET

(1)PUBLIC INHERITANCE
When a class is derived publically, all the public members of the base
class can be accessed by directly in the derived class where as in private
derivation, an object of derived class has no permission to access even
the public members of the base class directly.

P.P.Krishnaraj RSET

Write a program to derive a class publically from base class. Declare the base
class with its member under public section.

#include<iostream.h>
#include<conio.h>
class A //base class
{
public :
int X;
};
class B : public A
{
public :
int Y;
};

void main()

{

clrscr();

B b;

b.X=20;//access to base class member

b.y=30;//access to derived class member

cout<<“member of A:”<<b.X;

cout<<“member of B :”<<b.y;

}

P.P.Krishnaraj RSET

Write a program to derive a class publically from base class. Declare the base
class member under private section.

P.P.Krishnaraj RSET

#include<iostream.h>

#include<conio.h>

/*public derivation*/

class A //base class

{

private :

int X;

public :

A()

{ x=20; }

void show_x()

{

cout<<“”x=”<<x;

}

};

class B : public A //derived class

{

public :

int Y;

B()

{ y=30; }

void show()

{

show_x();

cout<<“y=“<<y;

}

};

continued….

void main()

{

clrscr();

B b;

b.show_x();

}

Output:

X=20

Y=30P.P.Krishnaraj RSET

Explanation: Class B is derived publically from base class A. The private
members of the base class can be accessed by using public member
functions of the base class.

The object b invokes the member function show() of the derived class.
The function show() invokes show_x() function of base class.

The object b can access member function defined in both base class
and derived class.

i.e

b.show() //invoke member function of the derived class.

b.show_x() // invokes member function of base class.

P.P.Krishnaraj RSET

(2) PRIVATE INHERITANCE

The object of privately derived class cannot access the public members
of base class under public section.

Q.) Write a program to derive a class privately. Declare the member of
base class under public section.

P.P.Krishnaraj RSET

#include<iostream.h>
#include<conio.h>
class A
{
public :
int X;
};
class B : private A
{
public :
int Y;
B()
{
X=20;
Y=40;
}

void show()

{

cout<<“X=“<<X;

cout<<“Y=“<<Y;

}

};

void main()

{

clrscr();

B b;

b.show();

}

OUTPUT

X=20

Y=40

P.P.Krishnaraj RSET

Explanation: class B is a derived class from class A. The member
variable X is a public member of base class. The object b of derived
class cannot access variable x directly.

b.X// cannot access

Member function of derived class can access members of base class. i.e
the function show() does the same.

P.P.Krishnaraj RSET

Protected inheritance

Why??

The member functions of derived class cannot access the private
member variables of base class. The private members of base class can
be accessed using public member functions of same class. This
approach makes a program lengthy. To overcome the problem
associated with private data another access specifier called protected
was introduced.

P.P.Krishnaraj RSET

Write a program to declare protected data in base class. Access data of base class
declared under protected section using member functions of derived class.

P.P.Krishnaraj RSET

#include<iostream.h>

#include<conio.h>

class A

{

protected :

int x;

};

class B : private A

{

int y;

public :

B()

{ X=30;

Y=40; }

void show()

{

cout<<“X=“<<X;

cout<<“Y=“<<Y;

}};

void main()

{

clrscr();

B b;

b.show();

}

OUTPUT

X=30

Y=40
P.P.Krishnaraj RSET

Types of inheritance
The process of inheritance depends on (1)number of base classes (i.e
program can use one or more base class to derive a single class)

(2)Nested derivation (the derived class can be used as base class and new
class can be derived from it.

Different types of inheritance are:

1. Single

2. Multiple

3. Hierarchical

4. multilevel

5. Hybrid

6. multipath

P.P.Krishnaraj RSET

Single inheritance
When only one base class is used for derivation of a class and derived
class is not used as base class, such type of inheritance between one
base and derived class is known as single inheritance.

Multiple inheritance
When two or more base classes is used for derivation of a class, it is
called multiple inheritance.

P.P.Krishnaraj RSET

Hierarchical inheritance
When a single base class is used for derivation of two or more classes.

Multilevel inheritance
When a derived class is derived from another derived class i.e, derived
class acts as base class.

P.P.Krishnaraj RSET

Multilevel inheritance
When a class is derived from another class i.e derived class acts as base class
such type of inheritance is called multilevel inheritance.

Hybrid inheritance
Combination of one or more type of inheritance is called as hybrid
inheritance.

P.P.Krishnaraj RSET

CONSTRUCTORS
Normally we invoke member function using object and also data members are
initialized through objects.

C++ provides a pair of in built special(???) member functions called constructor and
destructor.

Job???

class A

{

public :

int X,Y;

A()

{

X=20;

Y=30;

}

}

int main()

{

A obj;

obj.X=20;

obj.Y=30;

}

Class A

{

public :

int X,Y;

}

int main()

{

A a;

}

Note: when we create object for class,
when the object A a; is initialized,
the constructor is invoked.
i.e automatically invoked

Definition: A constructor is a special member function whose
task is to initialize the objects of that class. It is special because
its name is the same as the class name

P.P.Krishnaraj RSET

RULES FOR CONSTRUCTOR
1) Constructor has the same name as that of the class it belongs.

2) Constructor does not return any value.i.e neither return value nor void

1) In inheritance concept where properties of one class is inherited by
another. Constructor is not inherited.

2) Constructor is executed when an object is declared.

3) Constructor can have default and can be overloaded.

4) The constructor without arguments is called as default constructor.

A()
{
X=20;
Y=30;
}

P.P.Krishnaraj RSET

1) Default constructor
If we are not using any arguments in a constructor, then it is called as
default constructor.

class test

{

public :

test()

{

----;

----;

}

}

Since no argument is passed
this is called as default constructor
(this is used to initialise a value)

P.P.Krishnaraj RSET

Simple program to understand default constructor

#include<iostream.h>

#include<conio.h>

class test

{

int a,b;

test() //constructor declared

{

a=0;

b=0;

void disp(void)

{

cout<<“value of a :”<<a;

cout<<“value of b :”<<b;

}

int main()

{

test t; //constructor automatically invoked

t.disp(); //function call using object

getch();

}

/*no need of separate function of initialising the value of

variables*/

OUTPUT

value of a : 0

value of b :0
P.P.Krishnaraj RSET

2) Parameterized constructor

class test

{

int a,b;

public :

test(int X,int Y) //parameterised constructor,
some argument is passed.

{

a=X;

b=Y;

}
NOTE: now if we want to use constructor but value
initialisation to be done by programmer, we define another
constructor called as parameterised constructor.

P.P.Krishnaraj RSET

Simple program for parameterised constructor
#include<iostream.h>

#include<conio.h>

class test

{

int a,b;

public :

test(int X,int Y)

{

a=X;

b=Y;

}

void disp(void)

{

cout<<“value of a”<<a;

cout<<“value of b”<<b;

}};

int main();

{

test t(100,200); //NOTE: when we create object then
itself we have to pass the argument

t.disp();

getch();

}

OUTPUT

Value of a 100

Value of b 200

100 200

X Y
P.P.Krishnaraj RSET

3) Copy constructor
• using copy constructor it is possible for a programmer to declare and

initialize one object using reference of another object.

• when ever a constructor is called a copy of an object is created.

• all copy constructor requires one argument, with reference to an
object of that class.

Syntax:

Class_name (const class_name &object)

{

------;

------;

}

Const y?????
We are copying the object values,
no changes are needed.

P.P.Krishnaraj RSET

class_name

{

int x,y;

Parameterised constructor

{

X=20;

Y=30;

}

copy constructor syntax

{

----;

}

int main()

{

Obj 1(100,200);

Obj 2(OBJ 1);

}

Obj 1 X=100,

Y=200

Obj 2 X=100,

Y=200

Same copy

to be created

P.P.Krishnaraj RSET

#include<iostream.h>
#include<conio.h>
class test
{
int code, price;
public :
test(int c,int p)//parameterised constr.
{
code=c;
price=p;
}
test(const test &t1) //copy constr.
{
code=t.code;
price=t.price;
}

void disp() //for displaying
{
cout<<“code :”<<code;
cout<<: price :<<price;
}
int main()
{
test t1(101,100);
test t2(t1); //copy constructor called
/*object t2 is created member values are
initialised through t1 object*/

cout<<“t1 object”;
t1.disp();
cout<<“t2 object”;
t2.disp();
}P.P.Krishnaraj RSET

Constructor overloading definition: a class contains more than one
constructor which are defined with same name as the class but
contains different number of arguments. depending on number of
arguments the compiler executes appropriate constructor.

Constructor overloading

P.P.Krishnaraj RSET

#include<iostream.h>

#include<conio.h>

Class test

{

int a,b;

public :

test() //(1)default

{

a=0;

b=0;

}

test(int X)
//2.parameterised
{
a=b=X;
}
test(int X,int Y)
//3.parameterised
{
a=x;
b=y;
}
void disp()
{ cout<<“value of a”<<a;

cout<<“value of b”<<b;
}

int main()

{

test A;

test B(100);

test(100,200);

cout<<“object A”;

A.disp();

cout<<“object B”;

B.disp();

cout<<“object C”;

C.disp();

}

OUTPUT
OBJECT A
A=0
B=0
OBJECT B
A=100
B=100
OBJECT C
A=100
B=200

P.P.Krishnaraj RSET

